Modélisation et simulation de la MAS

Dr. Chemseddine RAHMOUNE

Maitre de Conférences "A"

2019 / 2020

A B F A B F

Modélisation et simulation des MAS triphasé à cage

Plan de l'exposé

1 Modélisation et simulation des MAS triphasé à cage

2 Modélisation et simulation des GAS triphasé à cage

3 Génératrice asynchrone en régime de saturation

le référentiel (α, β) lié au stator $(\omega_{coor} = 0)$,

• La modélisation de ce type de moteur est traitée dans la majorité des cas dans le référentiel (α, β) lié au stator $(\omega_{coor} = 0)$,

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

le référentiel (α, β) lié au stator $(\omega_{coor} = 0)$,

• La modélisation de ce type de moteur est traitée dans la majorité des cas dans le référentiel (α, β) lié au stator $(\omega_{coor} = 0)$,

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

le référentiel (α, β) lié au stator $(\omega_{coor} = 0)$,

• La modélisation de ce type de moteur est traitée dans la majorité des cas dans le référentiel (α, β) lié au stator $(\omega_{coor} = 0)$,

Modélisation et simulation des MAS triphasé à cage

Modélisation et simulation des GAS triphasé à cage Génératrice asynchrone en régime de saturation

Équations de tensions

$$\begin{cases} U_{s\alpha} = R_S I_{s\alpha} + \frac{d \Psi_{s\alpha}}{dt} \\ U_{s\beta} = R_S I_{s\beta} + \frac{d \Psi_{s\beta}}{dt} \\ 0 = U_{r\alpha} = R_R I_{r\alpha} + \frac{d \Psi_{r\alpha}}{dt} + \Psi_{r\beta} \omega_r \\ 0 = U_{r\beta} = R_R I_{r\beta} + \frac{d \Psi_{r\beta}}{dt} - \Psi_{r\alpha} \omega_r \end{cases}$$
(1)

< E

Modélisation et simulation des MAS triphasé à cage

Modélisation et simulation des GAS triphasé à cage Génératrice asynchrone en régime de saturation

Équations de flux

۲

 $\begin{cases} \Psi_{s\,\alpha} = L_S I_{s\,\alpha} + M I_{r\,\alpha} \\ \Psi_{s\,\beta} = L_S I_{s\,\beta} + M I_{r\,\beta} \\ \Psi_{r\,\alpha} = L_R I_{r\,\alpha} + M I_{s\,\alpha} \\ \Psi_{r\,\beta} = L_R I_{r\,\beta} + M I_{s\,\beta} \end{cases}$ (2)

Équations différentielle

• En introduisant les expressions des flux (2) dans le système (1), celui-ci devient :

$$\begin{cases} U_{s\alpha} = R_S I_{s\alpha} + L_s \frac{d I_{s\alpha}}{dt} + M \frac{d I_{r\alpha}}{dt} \\ U_{s\beta} = R_S I_{s\beta} + L_s \frac{d I_{s\beta}}{dt} + M \frac{d I_{r\beta}}{dt} \\ 0 = R_R I_{r\alpha} + L_r \frac{d I_{r\alpha}}{dt} + M \frac{d I_{s\alpha}}{dt} + (L_R I_r \beta + M I_s \beta) \omega_r \\ 0 = U_{r\beta} = R_R I_{r\beta} + L_r \frac{d I_{r\beta}}{dt} + M \frac{d I_{s\beta}}{dt} - (L_R I_r \alpha + M I_s \alpha) \omega_r \end{cases}$$
(3)

• Le couple électromagnétique est :

$$Te = \frac{3}{2} : pM \left(I_{r\alpha} I_{s\beta} - I_{r\beta} I_{s\alpha} \right)$$
(4)

(4) (3) (4) (4) (4)

Équations différentielle

• En introduisant les expressions des flux (2) dans le système (1), celui-ci devient :

$$\begin{cases} U_{s\alpha} = R_S I_{s\alpha} + L_s \frac{d I_{s\alpha}}{dt} + M \frac{d I_{r\alpha}}{dt} \\ U_{s\beta} = R_S I_{s\beta} + L_s \frac{d I_{s\beta}}{dt} + M \frac{d I_{r\beta}}{dt} \\ 0 = R_R I_{r\alpha} + L_r \frac{d I_{r\alpha}}{dt} + M \frac{d I_{s\alpha}}{dt} + (L_R I_r \beta + M I_s \beta) \omega_r \\ 0 = U_{r\beta} = R_R I_{r\beta} + L_r \frac{d I_{r\beta}}{dt} + M \frac{d I_{s\beta}}{dt} - (L_R I_r \alpha + M I_s \alpha) \omega_r \end{cases}$$
(3)

• Le couple électromagnétique est :

$$Te = \frac{3}{2} : pM \left(I_{r\alpha} I_{s\beta} - I_{r\beta} I_{s\alpha} \right)$$
(4)

3 + 4 = +

- La génératrice asynchrone à cage (GAS) n'engendre pas sa propre énergie d'excitation contrairement à l'alternateur.
- Pour cette raison il faudra lui apporter cette énergie et stabiliser sa tension de sortie et sa fréquence.
- Ainsi, on connecte aux bornes du stator une batterie de condensateurs et on fait tourner le rotor de la machine à la vitesse nécessaire.
- La présence d'un flux magnétique est indispensable pour l'autoamorçage de la génératrice

- La génératrice asynchrone à cage (GAS) n'engendre pas sa propre énergie d'excitation contrairement à l'alternateur.
- Pour cette raison il faudra lui apporter cette énergie et stabiliser sa tension de sortie et sa fréquence.
- Ainsi, on connecte aux bornes du stator une batterie de condensateurs et on fait tourner le rotor de la machine à la vitesse nécessaire.
- La présence d'un flux magnétique est indispensable pour l'autoamorçage de la génératrice

- La génératrice asynchrone à cage (GAS) n'engendre pas sa propre énergie d'excitation contrairement à l'alternateur.
- Pour cette raison il faudra lui apporter cette énergie et stabiliser sa tension de sortie et sa fréquence.
- Ainsi, on connecte aux bornes du stator une batterie de condensateurs et on fait tourner le rotor de la machine à la vitesse nécessaire.
- La présence d'un flux magnétique est indispensable pour l'autoamorçage de la génératrice

- La génératrice asynchrone à cage (GAS) n'engendre pas sa propre énergie d'excitation contrairement à l'alternateur.
- Pour cette raison il faudra lui apporter cette énergie et stabiliser sa tension de sortie et sa fréquence.
- Ainsi, on connecte aux bornes du stator une batterie de condensateurs et on fait tourner le rotor de la machine à la vitesse nécessaire.
- La présence d'un flux magnétique est indispensable pour l'autoamorçage de la génératrice

• La figure (3.2) représente le schéma de la GAS auto-amorçée

• Quand on accélère progressivement la GA à une vitesse moitié de celle du synchronisme ns, le flux rémanent Φ_r crée dans l'enroulement statorique une force électromotrice E_r sous l'action de laquelle un courant I_s va circuler vers les condensateurs renforçant ainsi le flux rémanent.

4 A N

• La figure (3.2) représente le schéma de la GAS auto-amorçée

• Quand on accélère progressivement la GA à une vitesse moitié de celle du synchronisme ns, le flux rémanent Φ_r crée dans l'enroulement statorique une force électromotrice E_r sous l'action de laquelle un courant I_s va circuler vers les condensateurs renforçant ainsi le flux rémanent.

4 A N

• La figure (3.2) représente le schéma de la GAS auto-amorçée

• Quand on accélère progressivement la GA à une vitesse moitié de celle du synchronisme ns, le flux rémanent Φ_r crée dans l'enroulement statorique une force électromotrice E_r sous l'action de laquelle un courant I_s va circuler vers les condensateurs renforçant ainsi le flux rémanent.

4 A N

• La figure (3.2) représente le schéma de la GAS auto-amorçée

• Quand on accélère progressivement la GA à une vitesse moitié de celle du synchronisme ns, le flux rémanent Φ_r crée dans l'enroulement statorique une force électromotrice E_r sous l'action de laquelle un courant I_s va circuler vers les condensateurs renforçant ainsi le flux rémanent.

- L'auto-amorçage de la génératrice ne se produit qu'en présence du condensateur.
- Ce dernier forme avec la génératrice un système oscillant dontles équations dérivent du schéma de la figure 3.3.

• Il faut noter que lorsque la machine n'est pas saturée, la caractéristique de magnétisation $\Phi_m(I_m)$ est une droite de pente sensiblement égale à la mutuelle M.

- L'auto-amorçage de la génératrice ne se produit qu'en présence du condensateur.
- Ce dernier forme avec la génératrice un système oscillant dontles équations dérivent du schéma de la figure 3.3.

• Il faut noter que lorsque la machine n'est pas saturée, la caractéristique de magnétisation $\Phi_m(I_m)$ est une droite de pente sensiblement égale à la mutuelle M.

- L'auto-amorçage de la génératrice ne se produit qu'en présence du condensateur.
- Ce dernier forme avec la génératrice un système oscillant dontles équations dérivent du schéma de la figure 3.3.

• Il faut noter que lorsque la machine n'est pas saturée, la caractéristique de magnétisation $\Phi_m(I_m)$ est une droite de pente sensiblement égale à la mutuelle M.

• Ce schéma est équivalent à une génératrice d'impédance Z_G débitant sur une impédance Z_C , d'où la figure 3.4.

- Z_C impédance du condensateur,
- Z_G impédance équivalente de la génératrice.

• Ce schéma est équivalent à une génératrice d'impédance Z_G débitant sur une impédance Z_C , d'où la figure 3.4.

- Z_C impédance du condensateur,
- Z_G impédance équivalente de la génératrice.

• Ce schéma est équivalent à une génératrice d'impédance Z_G débitant sur une impédance Z_C , d'où la figure 3.4.

- Z_C impédance du condensateur,
- Z_G impédance équivalente de la génératrice.

 \bullet D'où :

Auto-amorçage de la génératrice asynchrone à vide

• D'après la figure 3.4, nous avons :

$$\underline{Z}_C \underline{I}_s = -\underline{Z}_G \underline{I}_s \tag{5}$$
$$Z_C + Z_C = 0 \tag{6}$$

Auto-amorçage de la génératrice asynchrone à vide

• D'après la figure 3.4, nous avons :

$$\underline{Z}_C \, \underline{I}_s = -\underline{Z}_G \, \underline{I}_s \tag{5}$$

• D'où :

$$\underline{Z}_C + \underline{Z}_G = 0 \tag{6}$$

Auto-amorçage de la génératrice asynchrone à vide

• or:

$$\underline{Z}_G = r_s + j\omega l_{\sigma s} + \frac{j\omega M\left(\frac{r'_r}{g} + j\omega l'_{\sigma r}\right)}{\frac{r'_r}{g} + j\omega \left(M + l'_{\sigma r}\right)}$$
(7)
• et

$$\underline{Z}_C = -j\frac{1}{C\omega} \tag{8}$$

$$\begin{cases}
 l_{\sigma s} = L_s - M \\
 l'_{\sigma r} = L_r - M
\end{cases}$$
(9)

3 × 4 3 ×

• et On a :

• or :

$$\underline{Z}_{G} = r_{s} + j\omega l_{\sigma s} + \frac{j\omega M\left(\frac{r'_{r}}{g} + j\omega l'_{\sigma r}\right)}{\frac{r'_{r}}{g} + j\omega \left(M + l'_{\sigma r}\right)}$$
(7)
• et

$$\underline{Z}_{C} = -j\frac{1}{C\omega}$$
(8)

$$\begin{cases} l_{\sigma s} = L_s - M\\ l'_{\sigma r} = L_r - M \end{cases}$$
(9)

• et On a :

or:

$$\underline{Z}_{G} = r_{s} + j\omega l_{\sigma s} + \frac{j\omega M\left(\frac{r'_{r}}{g} + j\omega l'_{\sigma r}\right)}{\frac{r'_{r}}{g} + j\omega \left(M + l'_{\sigma r}\right)}$$
(7)
et

$$\underline{Z}_C = -j\frac{1}{C\omega} \tag{8}$$

$$\begin{cases} l_{\sigma s} = L_s - M\\ l'_{\sigma r} = L_r - M \end{cases}$$
(9)

• En remplaçant dans (7) on aura :

$$\underline{Z}_{G} = \frac{[r_{s}+j\omega(L_{s}-M)]\left(\frac{r_{r}^{'}}{g}+j\omega L_{r}^{'}\right)+j\omega M\left(\frac{r_{r}^{'}}{g}+j\omega(L_{r}^{'}-M)\right)}{\frac{r_{r}^{'}}{g}+j\omega L_{r}^{'}}$$

- En introduisant le coefficient de dispersion σ , tel que : $\sigma = 1 - M^2 / L_s L'_r$,
- On obtient :

$$\underline{Z}_{G} = \frac{r_{s} \frac{r_{r}'}{g} - \omega^{2} \sigma L_{s} L_{r}' + j\omega \left(L_{r}' r_{s} + L_{s} \frac{r_{r}'}{g}\right)}{\frac{r_{r}'}{g} + j\omega L_{r}'}$$
(10)

• En remplaçant dans (7) on aura :

$$\underline{Z}_{G} = \frac{[r_{s}+j\omega(L_{s}-M)]\left(\frac{r_{r}'}{g}+j\omega L_{r}'\right)+j\omega M\left(\frac{r_{r}'}{g}+j\omega(L_{r}'-M)\right)}{\frac{r_{r}'}{g}+j\omega L_{r}'}$$

• En introduisant le coefficient de dispersion σ , tel que : $\sigma = 1 - M^2/L_s L'_r$,

• On obtient :

$$\underline{Z}_G = \frac{r_s \frac{r'_r}{g} - \omega^2 \sigma L_s L'_r + j\omega \left(L'_r r_s + L_s \frac{r'_r}{g}\right)}{\frac{r'_r}{g} + j\omega L'_r} \tag{10}$$

• En remplaçant dans (7) on aura :

$$\underline{Z}_{G} = \frac{[r_{s}+j\omega(L_{s}-M)]\left(\frac{r_{r}'}{g}+j\omega L_{r}'\right)+j\omega M\left(\frac{r_{r}'}{g}+j\omega(L_{r}'-M)\right)}{\frac{r_{r}'}{g}+j\omega L_{r}'}$$

- En introduisant le coefficient de dispersion σ , tel que : $\sigma = 1 - M^2/L_s L'_r$,
- On obtient :

$$\underline{Z}_G = \frac{r_s \frac{r'_r}{g} - \omega^2 \sigma L_s L'_r + j\omega \left(L'_r r_s + L_s \frac{r'_r}{g}\right)}{\frac{r'_r}{g} + j\omega L'_r}$$
(10)

• Le fonctionnement stable de la génératrice asynchrone auto-amorcée sera assuré si l'équation (6) est satisfaite; c'est-à-dire si $\underline{Z}_C + \underline{Z}_G = 0$ est telle que :

$$Re(\underline{Z}_C + \underline{Z}_G) = 0 \tag{11}$$

$$Im(\underline{Z}_C + \underline{Z}_G) = 0 \tag{12}$$

- $\omega = \omega_{os}$ désigne la pulsation des grandeurs statoriques en régime d'auto-amorçage et ω_r la pulsation mécanique $(p \ \Omega_r)$.
- Le phénomène d'amorçage correspond au passage d'un état d'équilibre instable (début de l'amorçage) à un état d'équilibre stable (point de fonctionnement final) défini par les conditions (12) et (13).

• Le fonctionnement stable de la génératrice asynchrone auto-amorcée sera assuré si l'équation (6) est satisfaite; c'est-à-dire si $\underline{Z}_C + \underline{Z}_G = 0$ est telle que :

$$Re(\underline{Z}_C + \underline{Z}_G) = 0 \tag{11}$$

$$Im(\underline{Z}_C + \underline{Z}_G) = 0 \tag{12}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- $\omega = \omega_{os}$ désigne la pulsation des grandeurs statoriques en régime d'auto-amorçage et ω_r la pulsation mécanique $(p \ \Omega_r)$.
- Le phénomène d'amorçage correspond au passage d'un état d'équilibre instable (début de l'amorçage) à un état d'équilibre stable (point de fonctionnement final) défini par les conditions (12) et (13).

• Le fonctionnement stable de la génératrice asynchrone auto-amorcée sera assuré si l'équation (6) est satisfaite; c'est-à-dire si $\underline{Z}_C + \underline{Z}_G = 0$ est telle que :

$$Re(\underline{Z}_C + \underline{Z}_G) = 0 \tag{11}$$

$$Im(\underline{Z}_C + \underline{Z}_G) = 0 \tag{12}$$

・ロト ・四ト ・ヨト ・

- $\omega = \omega_{os}$ désigne la pulsation des grandeurs statoriques en régime d'auto-amorçage et ω_r la pulsation mécanique $(p \ \Omega_r)$.
- Le phénomène d'amorçage correspond au passage d'un état d'équilibre instable (début de l'amorçage) à un état d'équilibre stable (point de fonctionnement final) défini par les conditions (12) et (13).

- Par conséquent, l'amorçage ne peut se produit que si l'énergie fournie au système par l'organe d'entrainement est supérieure à l'énergie consommée dans les résistances r'_r et r_s .
- la puissance fournie au système correspond à la puissance dissipée dans la résistance : $r'_r \frac{1-g}{q}$
- La condition d'amorçage peut, dés lors, s'exprimer sous une forme simple :

$$Re(\underline{Z}_C + \underline{Z}_G) < 0 \tag{13}$$

• Avec :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{\omega^2 L_s L'_r \frac{r'_s}{g} (1 - \sigma)}{\left(\frac{r'_r}{g}\right)^2 + \omega^2 L'^2_r}$$
(14)

- Par conséquent, l'amorçage ne peut se produit que si l'énergie fournie au système par l'organe d'entrainement est supérieure à l'énergie consommée dans les résistances r'_r et r_s .
- la puissance fournie au système correspond à la puissance dissipée dans la résistance : $r'_r \frac{1-g}{q}$
- La condition d'amorçage peut, dés lors, s'exprimer sous une forme simple :

$$Re(\underline{Z}_C + \underline{Z}_G) < 0 \tag{13}$$

• Avec :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{\omega^2 L_s L'_r \frac{r'_r}{g} (1 - \sigma)}{\left(\frac{r'_r}{g}\right)^2 + \omega^2 L'^2_r}$$
(14)
- Par conséquent, l'amorçage ne peut se produit que si l'énergie fournie au système par l'organe d'entrainement est supérieure à l'énergie consommée dans les résistances r'_r et r_s .
- la puissance fournie au système correspond à la puissance dissipée dans la résistance : $r'_r \frac{1-g}{g}$
- La condition d'amorçage peut, dés lors, s'exprimer sous une forme simple :

$$Re(\underline{Z}_C + \underline{Z}_G) < 0 \tag{13}$$

• Avec :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{\omega^2 L_s L'_r \frac{r'_r}{g} (1 - \sigma)}{\left(\frac{r'_r}{g}\right)^2 + \omega^2 L'_r^2}$$
(14)

- Par conséquent, l'amorçage ne peut se produit que si l'énergie fournie au système par l'organe d'entrainement est supérieure à l'énergie consommée dans les résistances r'_r et r_s .
- la puissance fournie au système correspond à la puissance dissipée dans la résistance : $r'_r \frac{1-g}{g}$
- La condition d'amorçage peut, dés lors, s'exprimer sous une forme simple :

$$Re(\underline{Z}_C + \underline{Z}_G) < 0 \tag{13}$$

• Avec :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{\omega^2 L_s L'_r \frac{r'_r}{g} (1 - \sigma)}{\left(\frac{r'_r}{g}\right)^2 + \omega^2 L'^2_r}$$
(14)

• La figure ci dessous représente la variation de $Re(\underline{Z}_C + \underline{Z}_G)$ en fonction de g.

- Cette asymptote r_s et ne peut être négative que pour des valeurs de g comprises entre g_1 et g_2 .
- La condition d'amorçage s(exprime par conséquent par : $g_2 < g < g_1$.

(日) (四) (日) (日)

• La figure ci dessous représente la variation de $Re(\underline{Z}_C + \underline{Z}_G)$ en fonction de g.

- Cette asymptote r_s et ne peut être négative que pour des valeurs de g comprises entre g_1 et g_2 .
- La condition d'amorçage s(exprime par conséquent par : g₂ < g < g₁.

• La figure ci dessous représente la variation de $Re(\underline{Z}_C + \underline{Z}_G)$ en fonction de g.

- Cette asymptote r_s et ne peut être négative que pour des valeurs de g comprises entre g_1 et g_2 .
- La condition d'amorçage s (exprime par conséquent par : $g_2 < g < g_1$.

 \bullet Pour des valeurs trés faibles du glissement g :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{\omega^2 L_s L'_r (1 - \sigma)}{r'_r} g \qquad (15)$$

• D'où pour $Re(\underline{Z}_C + \underline{Z}_G) = 0$:

$$g_1 \cong -\frac{r_s \, r'_r}{\omega^2 \, L_s \, L'_r \, (1-\sigma)} \tag{16}$$

< ロト (同) (三) (三)

• La machine tourne pratiquement à sa vitesse de synchronisme ($g_1 = 0$).

 \bullet Pour des valeurs trés faibles du glissement g :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{\omega^2 L_s L'_r (1 - \sigma)}{r'_r} g \qquad (15)$$

• D'où pour $Re(\underline{Z}_C + \underline{Z}_G) = 0$:

$$g_1 \cong -\frac{r_s \, r'_r}{\omega^2 \, L_s \, L'_r \, (1-\sigma)}$$
 (16)

• La machine tourne pratiquement à sa vitesse de synchronisme ($g_1 = 0$).

 \bullet Pour des valeurs trés faibles du glissement g :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{\omega^2 L_s L'_r (1 - \sigma)}{r'_r} g \qquad (15)$$

• D'où pour
$$Re(\underline{Z}_C + \underline{Z}_G) = 0$$
:

$$g_1 \cong -\frac{r_s r'_r}{\omega^2 L_s L'_r (1-\sigma)}$$
 (16)

• La machine tourne pratiquement à sa vitesse de synchronisme ($g_1 = 0$).

• Pour des valeurs de g importantes :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{L_s \frac{r'_r}{g} (1 - \sigma)}{L'_r} \cong r_s + \frac{r'_r}{g}$$
(17)

• D'où :

$$g_2 \cong \frac{r'_r L_s(1-\sigma)}{r_s L'_r} \tag{18}$$

• Connaissant les glissements limites g_1 et g_2 , on en déduit les valeurs extrêmes de la capacité C, qui définissent le domaine dans lequel l'amorçage peut avoir lieu.

• Pour des valeurs de g importantes :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{L_s \frac{r'_r}{g} (1 - \sigma)}{L'_r} \cong r_s + \frac{r'_r}{g}$$
(17)

• D'où :

$$g_2 \cong \frac{r'_r L_s(1-\sigma)}{r_s L'_r} \tag{18}$$

• Connaissant les glissements limites g_1 et g_2 , on en déduit les valeurs extrêmes de la capacité C, qui définissent le domaine dans lequel l'amorçage peut avoir lieu.

• Pour des valeurs de g importantes :

$$Re(\underline{Z}_C + \underline{Z}_G) = r_s + \frac{L_s \frac{r'_r}{g} (1 - \sigma)}{L'_r} \cong r_s + \frac{r'_r}{g}$$
(17)

• D'où :

$$g_2 \cong \frac{r'_r L_s(1-\sigma)}{r_s L'_r} \tag{18}$$

• Connaissant les glissements limites g_1 et g_2 , on en déduit les valeurs extrêmes de la capacité C, qui définissent le domaine dans lequel l'amorçage peut avoir lieu.

- La génératrice asynchrone ne recevant d'autre énergie réactive que celle provenant de la capacité C.
- De l'équation (13) on peut tirer la valeur de la capacité qui doit être branchée :

$$Im(\underline{Z}_C + \underline{Z}_G) = -\frac{1}{C\omega} + \frac{\omega L_s \left[\left(\frac{r'_r}{g} \right)^2 + \sigma \omega^2 L_r^{\prime 2} \right]}{\left(\frac{r'_r}{g} \right)^2 + \omega^2 L_r^{\prime 2}} = 0$$
(19)

- La génératrice asynchrone ne recevant d'autre énergie réactive que celle provenant de la capacité C.
- De l'équation (13) on peut tirer la valeur de la capacité qui doit être branchée :

$$Im(\underline{Z}_C + \underline{Z}_G) = -\frac{1}{C\omega} + \frac{\omega L_s \left[\left(\frac{r'_r}{g} \right)^2 + \sigma \omega^2 L_r^{\prime 2} \right]}{\left(\frac{r'_r}{g} \right)^2 + \omega^2 L_r^{\prime 2}} = 0$$
(19)

• Pour
$$g = g_1 \cong 0$$
, on a $\omega_1 = \omega_r$, d'où :

$$-\frac{1}{C_1 \,\omega} + \omega_r \, L_s \cong 0 \tag{20}$$

$$C_1 \cong \frac{1}{\omega_r^2 L_s} \tag{21}$$

< ロト (同) (三) (三)

- Cette capacité correspond à la résonance avec l'inductance propre statorique L_s .
- Comme $g = g_1 \cong 0$, la machine génère une fréquence nominale en tournant pratiquement à la vitesse de synchronisme.

• Pour
$$g = g_1 \cong 0$$
, on a $\omega_1 = \omega_r$, d'où :

$$-\frac{1}{C_1 \,\omega} + \omega_r \, L_s \cong 0 \tag{20}$$

$$C_1 \cong \frac{1}{\omega_r^2 L_s} \tag{21}$$

- Cette capacité correspond à la résonance avec l'inductance propre statorique L_s .
- Comme $g = g_1 \cong 0$, la machine génère une fréquence nominale en tournant pratiquement à la vitesse de synchronisme.

• Pour
$$g = g_1 \cong 0$$
, on a $\omega_1 = \omega_r$, d'où :

$$-\frac{1}{C_1 \,\omega} + \omega_r \, L_s \cong 0 \tag{20}$$

$$C_1 \cong \frac{1}{\omega_r^2 L_s} \tag{21}$$

- Cette capacité correspond à la résonance avec l'inductance propre statorique L_s .
- Comme $g = g_1 \cong 0$, la machine génère une fréquence nominale en tournant pratiquement à la vitesse de synchronisme.

• Pour
$$g = g_1 \cong 0$$
, on a $\omega_1 = \omega_r$, d'où :

$$-\frac{1}{C_1 \,\omega} + \omega_r \, L_s \cong 0 \tag{20}$$

$$C_1 \cong \frac{1}{\omega_r^2 L_s} \tag{21}$$

- Cette capacité correspond à la résonance avec l'inductance propre statorique L_s .
- Comme $g = g_1 \cong 0$, la machine génère une fréquence nominale en tournant pratiquement à la vitesse de synchronisme.

• Pour
$$g = g_2 \cong -\frac{r'_r}{r_s} > -1$$
, on a :

$$\omega_r = (1 - g_2) \,\omega_2 \,\Rightarrow\, \omega_r > 2 \,\omega_2 \tag{22}$$

$$-\frac{1}{C_2 \,\omega_2} + \sigma \,\omega_2 \,L_s \cong 0 \tag{23}$$

- La capacité C_2 correspond à la résonance avec l'inductance $\sigma\sigma L_s$ qui n'est autre que l'inductance de court-circuit de la machine.
- Cette solution est rejeter car pour générer la fréquence nominale, la machine doit tourner pratiquement au double de sa vitesse de synchronisme.

• Pour
$$g = g_2 \cong -\frac{r'_r}{r_s} > -1$$
, on a :

$$\omega_r = (1 - g_2) \,\omega_2 \,\Rightarrow\, \omega_r > 2 \,\omega_2 \tag{22}$$

$$-\frac{1}{C_2 \,\omega_2} + \sigma \,\omega_2 \,L_s \cong 0 \tag{23}$$

- La capacité C_2 correspond à la résonance avec l'inductance $\sigma\sigma L_s$ qui n'est autre que l'inductance de court-circuit de la machine.
- Cette solution est rejeter car pour générer la fréquence nominale, la machine doit tourner pratiquement au double de sa vitesse de synchronisme.

• Pour
$$g = g_2 \cong -\frac{r'_r}{r_s} > -1$$
, on a :

$$\omega_r = (1 - g_2) \,\omega_2 \,\Rightarrow\, \omega_r > 2 \,\omega_2 \tag{22}$$

$$-\frac{1}{C_2 \,\omega_2} + \sigma \,\omega_2 \,L_s \cong 0 \tag{23}$$

- La capacité C_2 correspond à la résonance avec l'inductance $\sigma\sigma L_s$ qui n'est autre que l'inductance de court-circuit de la machine.
- Cette solution est rejeter car pour générer la fréquence nominale, la machine doit tourner pratiquement au double de sa vitesse de synchronisme.

• Pour
$$g = g_2 \cong -\frac{r'_r}{r_s} > -1$$
, on a :

$$\omega_r = (1 - g_2) \,\omega_2 \,\Rightarrow\, \omega_r > 2 \,\omega_2 \tag{22}$$

$$-\frac{1}{C_2 \,\omega_2} + \sigma \,\omega_2 \,L_s \cong 0 \tag{23}$$

- La capacité C_2 correspond à la résonance avec l'inductance $\sigma\sigma L_s$ qui n'est autre que l'inductance de court-circuit de la machine.
- Cette solution est rejeter car pour générer la fréquence nominale, la machine doit tourner pratiquement au double de sa vitesse de synchronisme.

- Lorsqu'un moteur asynchrone est compensé en plein charge au moyen d'une capacité C d'une façon à ce que le facteur de puissance résultant soit égal à l'unité, il y a un risque d'auto-amorçage lorsque le moteur est déclenché en restant connecté aux condensateur.
- En effet, la capacité C est telle que la pulsation de résonance ω_0 est largement inférieure à ω_n :

$$\omega_0 = \sqrt{\frac{1}{L_s C}} = \omega_n \sqrt{\frac{X_{cn}}{X_{ln}}} \tag{24}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

• Avec : $X_{cn} = \frac{1}{C \omega_n}$ et $X_{ln} = L_s \omega_n$ Sont les réactances calculées à la fréquences nominale.

- Lorsqu'un moteur asynchrone est compensé en plein charge au moyen d'une capacité C d'une façon à ce que le facteur de puissance résultant soit égal à l'unité, il y a un risque d'auto-amorçage lorsque le moteur est déclenché en restant connecté aux condensateur.
- En effet, la capacité C est telle que la pulsation de résonance ω_0 est largement inférieure à ω_n :

$$\omega_0 = \sqrt{\frac{1}{L_s C}} = \omega_n \sqrt{\frac{X_{cn}}{X_{ln}}} \tag{24}$$

• Avec : $X_{cn} = \frac{1}{C \omega_n}$ et $X_{ln} = L_s \omega_n$ Sont les réactances calculées à la fréquences nominale.

- Lorsqu'un moteur asynchrone est compensé en plein charge au moyen d'une capacité C d'une façon à ce que le facteur de puissance résultant soit égal à l'unité, il y a un risque d'auto-amorçage lorsque le moteur est déclenché en restant connecté aux condensateur.
- En effet, la capacité C est telle que la pulsation de résonance ω_0 est largement inférieure à ω_n :

$$\omega_0 = \sqrt{\frac{1}{L_s C}} = \omega_n \sqrt{\frac{X_{cn}}{X_{ln}}} \tag{24}$$

• Avec : $X_{cn} = \frac{1}{C \omega_n}$ et $X_{ln} = L_s \omega_n$ Sont les réactances calculées à la fréquences nominale.

Modélisation de l'auto-amorçage à vide

• Pour simuler l'auto-amorçage, il suffit de résoudre le système d'équations de tensions en tenant compte de la tension aux bornes du condensateur.

$$\begin{cases} -U_{s\alpha} = R_S I_{s\alpha} + L_s \frac{d I_{s\alpha}}{dt} + M \frac{d I_{r\alpha}}{dt} \\ -U_{s\beta} = R_S I_{s\beta} + L_s \frac{d I_{s\beta}}{dt} + M \frac{d I_{r\beta}}{dt} \\ 0 = R_R I_{r\alpha} + L_r \frac{d I_{r\alpha}}{dt} + M \frac{d I_{s\alpha}}{dt} + (L_R I_r \beta + M I_{s\beta}) \omega_r \\ 0 = U_{r\beta} = R_R I_{r\beta} + L_r \frac{d I_{r\beta}}{dt} + M \frac{d I_{s\beta}}{dt} - (L_R I_r \alpha + M I_{s\alpha}) \omega_r \\ \frac{d}{dt} U_{s\alpha} = \frac{1}{C} I_{s\alpha} + \omega_{coor} U_{s\beta} \\ \frac{d}{dt} U_{s\beta} = \frac{1}{C} I_{s\beta} - \omega_{coor} U_{s\alpha} \end{cases}$$

$$(25)$$

Modélisation de l'auto-amorçage à vide

- Si la valeur du condensateur est telle que $C < \frac{1}{L_s \omega^2}$ la tension aprés une tentative à l'oscillation, décroit rapidement pour atteindre une valeur trés ptite.
- Par conséquent, l'auto-amorçage n'a lieu que pour une certaine valeur du condensateur telle que $C > \frac{1}{L_s \omega^2}$ qui correspond à la résonance, et une vitesse de rotation donnée.

Modélisation de l'auto-amorçage à vide

- Si la valeur du condensateur est telle que $C < \frac{1}{L_s \omega^2}$ la tension aprés une tentative à l'oscillation, décroit rapidement pour atteindre une valeur trés ptite.
- Par conséquent, l'auto-amorçage n'a lieu que pour une certaine valeur du condensateur telle que $C > \frac{1}{L_s \, \omega^2}$ qui correspond à la résonance , et une vitesse de rotation donnée.

Introduction

- En régime de saturation, les flux et les courants ne sont plus proportionnels.
- La caractérisation de magnétisation se compose en plus de la partie linéaire, d'une partie dite coude et une autre dite de saturation.
- C'est cette partie qui va limiter les grandeur de la génératrice.

Introduction

- En régime de saturation, les flux et les courants ne sont plus proportionnels.
- La caractérisation de magnétisation se compose en plus de la partie linéaire, d'une partie dite coude et une autre dite de saturation.
- C'est cette partie qui va limiter les grandeur de la génératrice.

Introduction

- En régime de saturation, les flux et les courants ne sont plus proportionnels.
- La caractérisation de magnétisation se compose en plus de la partie linéaire, d'une partie dite coude et une autre dite de saturation.
- C'est cette partie qui va limiter les grandeur de la génératrice.

Fonctionnement à vide

- L'origine de la FEM induite est similaire à celle de l'alternateur c'est-à-dire $E = f(n, \Phi\Phi)$.
- Entre la FEM E et le courant de magnétisation il existe deux relations :
- $E = f(I_m)$ caractéristique interne;
- $E = X_c I_c = X_c I_s$ qui est une droite semblable à la droite des inducteurs dans le cas d'une génératrice shunt.

<日

<</p>

Fonctionnement à vide

- L'origine de la FEM induite est similaire à celle de l'alternateur c'est-à-dire $E = f(n, \Phi\Phi)$.
- Entre la FEM E et le courant de magnétisation il existe deux relations :
- $E = f(I_m)$ caractéristique interne;
- $E = X_c I_c = X_c I_s$ qui est une droite semblable à la droite des inducteurs dans le cas d'une génératrice shunt.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Fonctionnement à vide

- L'origine de la FEM induite est similaire à celle de l'alternateur c'est-à-dire $E = f(n, \Phi\Phi)$.
- Entre la FEM E et le courant de magnétisation il existe deux relations :
- $E = f(I_m)$ caractéristique interne;
- $E = X_c I_c = X_c I_s$ qui est une droite semblable à la droite des inducteurs dans le cas d'une génératrice shunt.

<日

<</p>

Fonctionnement à vide

- L'origine de la FEM induite est similaire à celle de l'alternateur c'est-à-dire $E = f(n, \Phi\Phi)$.
- Entre la FEM E et le courant de magnétisation il existe deux relations :
- $E = f(I_m)$ caractéristique interne;
- $E = X_c I_c = X_c I_s$ qui est une droite semblable à la droite des inducteurs dans le cas d'une génératrice shunt.

• • = • • = •

Fonctionnement à vide

• Le tracé de ces deux caractéristiques (figure) montre que le point de fonctionnement est en A (point d'intersection des deux courbes.

Fonctionnement à vide

- La position du point A est liée à la pente de la droite : $\tan \alpha = \frac{1}{C \omega}$
- Lors de la variation de C, le point A se déplace sur la courbe $E = f(I_m)$; or quand C augmente, la tension E augmente.

.
Fonctionnement à vide

- La position du point A est liée à la pente de la droite : $\tan \alpha = \frac{1}{C\omega}$
- Lors de la variation de C, le point A se déplace sur la courbe $E = f(I_m)$; or quand C augmente, la tension E augmente.

Équations de la génératrice dans le repère U,V.

Réécrivant le système d'équations :

$$\begin{cases}
-U_{SU} = R_S I_{SU} + \frac{d \Psi_{SU}}{dt} - \Psi_{SV} \omega_{coor} \\
-U_{SV} = R_S I_{SV} + \frac{d \Psi_{SV}}{dt} + \Psi_{SU} \omega_{coor} \\
0 = R_R I_{RU} + \frac{d \Psi_{RU}}{dt} - \Psi_{RV} (\omega_{coor} - \omega_r) \\
U_{RV} = R_R I_{RV} + \frac{d \Psi_{RV}}{dt} + \Psi_{RU} (\omega_{coor} - \omega_r)
\end{cases}$$
(26)

Schéma équivalent de GAS dans le référentiel de Park généralisé

La figure représente le schéma équivalent de GAS dans le référentiel de Park généralisé

Disposition des enroulements suivant les axes U, V.

-

Schéma équivalent de GAS dans le référentiel de Park généralisé

Les expressions des flux sont données selon la figure :

$$\begin{cases}
\Psi_{SU} = L_S I_{SU} + M I_{RU} \\
\Psi_{SV} = L_S I_{SV} + M I_{RV} \\
\Psi_{RU} = L_R I_{RU} + M I_{SU} \\
\Psi_{RV} = L_R I_{RV} + M I_{SV}
\end{cases}$$
(27)

Représentation schématique des flux

• Ψ_{mU} est le flux principal coupé avec les deux enroulements.

- $\Psi_{\sigma US}$, $\Psi_{\sigma UR}$ sont les flux de fuites des enroulements statorique et roorique selon l'axe U.
- $\Psi_{\sigma USR}$ est le flux mutuel entre le stator et le rotor.

Représentation schématique des flux

- Ψ_{mU} est le flux principal coupé avec les deux enroulements.
- $\Psi_{\sigma US}$, $\Psi_{\sigma UR}$ sont les flux de fuites des enroulements statorique et roorique selon l'axe U.
- $\Psi_{\sigma USR}$ est le flux mutuel entre le stator et le rotor.

Représentation schématique des flux

- Ψ_{mU} est le flux principal coupé avec les deux enroulements.
- $\Psi_{\sigma US}$, $\Psi_{\sigma UR}$ sont les flux de fuites des enroulements statorique et roorique selon l'axe U.
- $\Psi_{\sigma USR}$ est le flux mutuel entre le stator et le rotor.

Les inductances propres et mutuelle figurant dans les relations du système (28) sont :

$$\begin{cases}
L_{US} = M_U + l_{\sigma US} + l_{\sigma USR} = L_S \\
L_{VS} = M_V + l_{\sigma VS} + l_{\sigma VSR} = L_S \\
L_{UR} = M_U + l_{\sigma UR} + l_{\sigma USR} = L_R \\
L_{VR} = M_V + l_{\sigma VR} + l_{\sigma VSR} = L_R \\
L_{USR} = M_U + l_{\sigma USR} \\
L_{VSR} = M_V + l_{\sigma VSR}
\end{cases}$$
(28)

Représentation schématique des flux

- Prenons : $l_{\sigma USR} = l_{\sigma VSR} = 0$; d'où : $L_{USR} = L_{VSR} = M$
- En introduisant ces valeurs dans les expressions des flux, on obtient :

$$\begin{cases}
\Psi_{SU} = (M_U + l_{\sigma US}) I_{SU} + M_U I_{RU} \\
\Psi_{SV} = (M_V + l_{\sigma VS}) I_{SV} + M_V I_{RV} \\
\Psi_{RU} = (M_U + l_{\sigma UR}) I_{RU} + M_U I_{SU} \\
\Psi_{RV} = M_V + l_{\sigma VR} I_{RV} + M_V I_{SV}
\end{cases}$$

- Prenons : $l_{\sigma USR} = l_{\sigma VSR} = 0$; d'où : $L_{USR} = L_{VSR} = M$
- En introduisant ces valeurs dans les expressions des flux, on obtient :

$$\begin{cases}
\Psi_{SU} = (M_U + l_{\sigma US}) I_{SU} + M_U I_{RU} \\
\Psi_{SV} = (M_V + l_{\sigma VS}) I_{SV} + M_V I_{RV} \\
\Psi_{RU} = (M_U + l_{\sigma UR}) I_{RU} + M_U I_{SU} \\
\Psi_{RV} = M_V + l_{\sigma VR} I_{RV} + M_V I_{SV}
\end{cases}$$
(29)

Représentation schématique des flux

D'où :

$$\begin{cases} \Psi_{SU} = M_U \ (I_{SU} + I_{RU}) + l_{\sigma US} \ I_{SU} = M_U \ I_{mU} + l_{\sigma US} \ I_{SU} \\ \Psi_{SV} = M_V \ (I_{SV} + I_{RV}) + l_{\sigma VS} \ I_{SV} = M_V \ I_{mV} + l_{\sigma VS} \ I_{SV} \\ \Psi_{RU} = M_U \ (I_{SU} + I_{RU}) + l_{\sigma UR} \ I_{RU} = M_U \ I_{mU} + l_{\sigma UR} \ I_{RU} \\ \Psi_{RV} = M_V \ (I_{SV} + I_{RV}) + l_{\sigma VR} \ I_{RV} = M_V \ I_{mV} + l_{\sigma VR} \ I_{RV} \\ \end{cases}$$
(30)

Représentation schématique des flux

• On peut donc écrire les équations différentielles de flux :

$$\begin{cases}
\frac{d\Psi_{SU}}{dt} = \frac{d\Psi_{mU}}{dt} + l_{\sigma US} \frac{dI_{SU}}{dt} \\
\frac{d\Psi_{SV}}{dt} = \frac{d\Psi_{mV}}{dt} + l_{\sigma VS} \frac{dI_{SV}}{dt} \\
\frac{d\Psi_{RU}}{dt} = \frac{d\Psi_{mU}}{dt} + l_{\sigma UR} \frac{dI_{RU}}{dt} \\
\Psi_{RV} = \frac{d\Psi_{mV}}{dt} + l_{\sigma VR} \frac{dI_{RV}}{dt}
\end{cases}$$
(31)

• Où Ψ_{mV} et Ψ_{mU} représentent les composantes du flux magnétisant selon les axes direct et quadratique U, V.

< ロト (同) (三) (三)

Représentation schématique des flux

• On peut donc écrire les équations différentielles de flux :

$$\begin{cases}
\frac{d\Psi_{SU}}{dt} = \frac{d\Psi_{mU}}{dt} + l_{\sigma US} \frac{dI_{SU}}{dt} \\
\frac{d\Psi_{SV}}{dt} = \frac{d\Psi_{mV}}{dt} + l_{\sigma VS} \frac{dI_{SV}}{dt} \\
\frac{d\Psi_{RU}}{dt} = \frac{d\Psi_{mU}}{dt} + l_{\sigma UR} \frac{dI_{RU}}{dt} \\
\Psi_{RV} = \frac{d\Psi_{mV}}{dt} + l_{\sigma VR} \frac{dI_{RU}}{dt}
\end{cases}$$
(31)

• Où Ψ_{mV} et Ψ_{mU} représentent les composantes du flux magnétisant selon les axes direct et quadratique U, V.

Représentation schématique des flux

- Le problème revient donc à décrire le comportement du flux magnétisant dans le système d'axes U, V pour pouvoir évaluer les quantités magnétisantes : $\frac{d\Psi_{mV}}{dt}$ et $\frac{d\Psi_{mU}}{dt}$
- Pour cela, on va décomposer le flux Ψ_m sur les axes U, V (la même chose pour le courant i_m) tout en supposant que le courant magnétisant est en phase avec le flux magnétisant (pertes fer négligées).

<日

<</p>

Représentation schématique des flux

- Le problème revient donc à décrire le comportement du flux magnétisant dans le système d'axes U, V pour pouvoir évaluer les quantités magnétisantes : $\frac{d\Psi_{mV}}{dt}$ et $\frac{d\Psi_{mU}}{dt}$
- Pour cela, on va décomposer le flux Ψ_m sur les axes U, V (la même chose pour le courant i_m) tout en supposant que le courant magnétisant est en phase avec le flux magnétisant (pertes fer négligées).

Représentation schématique des flux

• cos
$$\beta$$
 = $\frac{|I_{mU}|}{|I_m|} = \frac{|\psi_{mU}|}{|\psi_m|}$
• sin β = $\frac{|I_{mV}|}{|I_m|} = \frac{|\psi_{mV}|}{|\psi_m|}$

-

Représentation schématique des flux

• cos
$$\beta = \frac{|I_{mU}|}{|I_m|} = \frac{|\psi_{mU}|}{|\psi_m|}$$

• sin $\beta = \frac{|I_{mV}|}{|I_m|} = \frac{|\psi_{mV}|}{|\psi_m|}$

-

Représentation schématique des flux

• Sachant que :
$$M = \frac{|\psi_m|}{|I_m|}$$

• on peut calculer :

$$\frac{d\psi_{mU}}{dt} = \frac{d\left(M \ I_{mU}\right)}{dt} = \frac{dM}{dt} \ I_m + \frac{d \ I_{mU}}{dt} \ M \tag{32}$$
$$\frac{d\psi_{mV}}{dt} = \frac{d\left(M \ I_{mV}\right)}{dt} = \frac{dM}{dt} \ I_{mV} + \frac{d \ I_{mV}}{dt} \ M \tag{33}$$

3 + 4 = +

Représentation schématique des flux

• Sachant que :
$$M = \frac{|\psi_m|}{|I_m|}$$

• on peut calculer :

$$\frac{d\psi_{mU}}{dt} = \frac{d\left(M \ I_{mU}\right)}{dt} = \frac{dM}{dt} \ I_m + \frac{d \ I_{mU}}{dt} \ M \tag{32}$$
$$\frac{d\psi_{mV}}{dt} = \frac{d\left(M \ I_{mV}\right)}{dt} = \frac{dM}{dt} \ I_{mV} + \frac{d \ I_{mV}}{dt} \ M \tag{33}$$

Représentation schématique des flux

• La dérivée de l'inductance de magnétisation *M* peut être exprimée comme :

$$\frac{dM}{dt} = \frac{dM}{d|I_m|} \frac{d|I_m|}{dt} = \frac{dM}{d|I_m|} \frac{1}{|I_m|} \left(I_{mU} \frac{dI_{mU}}{dt} + I_{mV} \frac{dI_{mV}}{dt} \right)$$
(34)

• Si on substitue cette équation (3.34) dans les équations (3.32) (3.33), on obtient les expressions des flux telles que :

$$\frac{d\psi_{mU}}{dt} = \frac{dM}{d|I_m|} \frac{I_{mU}}{|I_m|} \left(I_{mU} \frac{dI_{mU}}{dt} + I_{mV} \frac{dI_{mV}}{dt} \right) + \frac{dI_{mU}}{dt} M$$

۰

$$\frac{d\psi_{mU}}{dt} = \left(\frac{dM}{d|I_m|}\frac{I_{mU}^2}{|I_m|} + M\right) \frac{d|I_{mU}}{dt} + \left(\frac{dM}{d|I_m|}\frac{I_{mU}|I_m|}{|I_m|}\frac{d|I_{mV}}{dt}\right) \frac{d|I_m|}{dt}$$
(35)

• On peut montrer facilement que :

$$|I_m| \frac{dM}{d |I_m|} = \frac{d |\psi_m|}{d |I_m|} - M = L - M \tag{36}$$

Représentation schématique des flux

• Si on substitue cette équation (3.34) dans les équations (3.32) (3.33), on obtient les expressions des flux telles que :

$$\frac{d\psi_{mU}}{dt} = \frac{dM}{d|I_m|} \frac{I_{mU}}{|I_m|} \left(I_{mU} \frac{dI_{mU}}{dt} + I_{mV} \frac{dI_{mV}}{dt} \right) + \frac{dI_{mU}}{dt} M$$
$$\frac{d\psi_{mU}}{dt} = \left(\frac{dM}{d|I_m|} \frac{I_{mU}^2}{|I_m|} + M \right) \frac{dI_{mU}}{dt} + \left(\frac{dM}{d|I_m|} \frac{I_{mU}}{|I_m|} \frac{I_{mV}}{dt} \right) \frac{dI_{mV}}{dt}$$
(35)

• On peut montrer facilement que :

$$|I_m| \frac{dM}{d |I_m|} = \frac{d |\psi_m|}{d |I_m|} - M = L - M$$
(36)

Représentation schématique des flux

• Si on substitue cette équation (3.34) dans les équations (3.32) (3.33), on obtient les expressions des flux telles que :

$$\frac{d\psi_{mU}}{dt} = \frac{dM}{d|I_m|} \frac{I_{mU}}{|I_m|} \left(I_{mU} \frac{dI_{mU}}{dt} + I_{mV} \frac{dI_{mV}}{dt} \right) + \frac{dI_{mU}}{dt} M$$

$$\frac{d\psi_{mU}}{dt} = \left(\frac{dM}{dt} \frac{I^2}{I^2} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{I}{dt} + \frac{1}{2} \right) \frac{dI_{mU}}{dt} + \frac{1}{2} \left(\frac{dM}{dt} - \frac{1}{2} \right) \frac{dI_{mU}}{dt$$

$$\frac{d\psi_{mU}}{dt} = \left(\frac{dM}{d|I_m|}\frac{I_{mU}^2}{|I_m|} + M\right) \frac{dI_{mU}}{dt} + \left(\frac{dM}{d|I_m|}\frac{I_{mU}}{|I_m|}\frac{I_{mV}}{|I_m|}\frac{dI_{mV}}{dt}\right)$$
(35)

• On peut montrer facilement que :

$$|I_m| \frac{dM}{d |I_m|} = \frac{d |\psi_m|}{d |I_m|} - M = L - M$$
(36)

Représentation schématique des flux

$$|I_m| \frac{dM}{d |I_m|} = \frac{d |\psi_m|}{d |I_m|} - M = L - M$$
(37)

• Où *L* est la dérivée du flux magnétisant par rapport au courant magnétisant par rapport au courant magnétisant appelée inductance dynamique.

$$|I_m| \frac{dM}{d|I_m|} = \frac{d|\psi_m|}{d|I_m|} - M = L - M$$

• Posons :

$$\ell_{UV} = \frac{dM}{d|I_m|} \frac{I_{mU}I_{mV}}{|I_m|} = \frac{I_{mU}I_{mV}}{|I_m|^2} [L - M]$$

•
$$\ell_{mU} = M + \frac{I_{mU}}{I_{mV}} \ell_{UV}$$

• De la même façon on a arrivé à :

$$\ell_{mV} = M + \frac{I_{mV}}{I_{mU}} \ell_{UV}$$

- Avec :
 - ℓ_{UV} est l'inductance cyclique d'inter-saturation;
 - ℓ_{mU} est l'inductance cyclique de saturation selon l'axe U;
 - ℓ_{mV} l'inductance cyclique de saturation selon l'axe V.

- 4 同 6 - 4 三 6 - 4 三 6

$$|I_m| \frac{dM}{d|I_m|} = \frac{d|\psi_m|}{d|I_m|} - M = L - M$$

• Posons :

$$\ell_{UV} = \frac{dM}{d|I_m|} \frac{I_{mU} I_{mV}}{|I_m|} = \frac{I_{mU} I_{mV}}{|I_m|^2} [L - M]$$

•
$$\ell_{mU} = M + \frac{I_{mU}}{I_{mV}} \ \ell_{UV}$$

• De la même façon on a arrivé à :
$$\ell_{mV} = M + \frac{I_{mV}}{I_{mU}} \ \ell_{UV}$$

- Avec :
 - ℓ_{UV} est l'inductance cyclique d'inter-saturation;
 - ℓ_{mU} est l'inductance cyclique de saturation selon l'axe U;
 - ℓ_{mV} l'inductance cyclique de saturation selon l'axe V.

$$|I_m| \frac{dM}{d|I_m|} = \frac{d|\psi_m|}{d|I_m|} - M = L - M$$

• Posons :

$$\ell_{UV} = \frac{dM}{d|I_m|} \frac{I_{mU} \ I_{mV}}{|I_m|} = \frac{I_{mU} \ I_{mV}}{|I_m|^2} [L - M]$$

•
$$\ell_{mU} = M + \frac{I_{mU}}{I_{mV}} \ \ell_{UV}$$

- De la même façon on a arrivé à : $\ell_{mV} = M + \frac{I_{mV}}{I_{mU}} \ell_{UV}$
- Avec :
 - ℓ_{UV} est l'inductance cyclique d'inter-saturation;
 - ℓ_{mU} est l'inductance cyclique de saturation selon l'axe U;
 - ℓ_{mV} l'inductance cyclique de saturation selon l'axe V.

$$|I_m| \frac{dM}{d|I_m|} = \frac{d|\psi_m|}{d|I_m|} - M = L - M$$

• Posons :

$$\ell_{UV} = \frac{dM}{d|I_m|} \frac{I_{mU} I_{mV}}{|I_m|} = \frac{I_{mU} I_{mV}}{|I_m|^2} [L - M]$$

•
$$\ell_{mU} = M + \frac{I_{mU}}{I_{mV}} \ \ell_{UV}$$

- De la même façon on a arrivé à : $\ell_{mV} = M + \frac{I_{mV}}{I_{mU}} \ell_{UV}$
- \bullet Avec :
 - ℓ_{UV} est l'inductance cyclique d'inter-saturation;
 - ℓ_{mU} est l'inductance cyclique de saturation selon l'axe U;
 - ℓ_{mV} l'inductance cyclique de saturation selon l'axe V.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Les inductances cycliques totales statoriques et rotoriques

selon les axes U,V sont ;
$$\begin{cases} \ell_{sU} = \ell_{mU} + l_{\sigma s} \\ \ell_{sV} = \ell_{mV} + l_{\sigma s} \\ \ell_{rU} = \ell_{mU} + l_{\sigma r} \\ \ell_{rV} = \ell_{mV} + l_{\sigma r} \end{cases}$$

- Dans le cas linéaire (de non saturation) on a : $\ell_{UV=} = 0$ et $\ell_{mU=} \ell_{mV=} = M$.
- Les inductances cycliques de saturation dans le référentiel (α, β) sont exprimées par : L_{mα} = L_m + ^{I_{mα}}/_{I_{mβ}} L_{αβ} = L cos² μ + L_m sin² μ L_{mβ} = L_m + ^{I_{mβ}}/_{I_{mα}} L_{αβ} = L sin² μ + L_m cos² μ
 Avec : cos μ = ^{I_{mα}}/_{|I_m|} et sin μ = ^{I_{mβ}}/_{|I_m|}

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Les inductances cycliques totales statoriques et rotoriques

selon les axes U,V sont ;
$$\begin{cases} \ell_{sU} = \ell_{mU} + l_{\sigma s} \\ \ell_{sV} = \ell_{mV} + l_{\sigma s} \\ \ell_{rU} = \ell_{mU} + l_{\sigma r} \\ \ell_{rV} = \ell_{mV} + l_{\sigma r} \end{cases}$$

- Dans le cas linéaire (de non saturation) on a : $\ell_{UV=} = 0$ et $\ell_{mU=} \ell_{mV=} = M$.
- Les inductances cycliques de saturation dans le référentiel (α, β) sont exprimées par : L_{mα} = L_m + ^{I_{mα}}/_{I_{mβ}} L_{αβ} = L cos² μ + L_m sin² μ L_{mβ} = L_m + ^{I_{mβ}}/_{I_{mα}} L_{αβ} = L sin² μ + L_m cos² μ
 Avec : cos μ = ^{I_{mα}}/_{|I_m|} et sin μ = ^{I_{mβ}}/_{|I_m|}

(D) (A) (A)

• Les inductances cycliques totales statoriques et rotoriques

selon les axes U,V sont ;
$$\begin{cases} \ell_{sU} = \ell_{mU} + l_{\sigma s} \\ \ell_{sV} = \ell_{mV} + l_{\sigma s} \\ \ell_{rU} = \ell_{mU} + l_{\sigma r} \\ \ell_{rV} = \ell_{mV} + l_{\sigma r} \end{cases}$$

- Dans le cas linéaire (de non saturation) on a : $\ell_{UV=} = 0$ et $\ell_{mU=} \ell_{mV=} = M$.
- Les inductances cycliques de saturation dans le référentiel (α, β) sont exprimées par : L_{mα} = L_m + ^{I_{mα}}/_{I_{mβ}} L_{αβ} = L cos² μ + L_m sin² μ L_{mβ} = L_m + ^{I_{mβ}}/_{I_{mα}} L_{αβ} = L sin² μ + L_m cos² μ
 Avec : cos μ = ^{I_{mα}}/_{|I_m|} et sin μ = ^{I_{mβ}}/_{|I_m|}

• Les inductances cycliques totales statoriques et rotoriques

selon les axes U,V sont ;
$$\begin{cases} \ell_{sU} = \ell_{mU} + l_{\sigma s} \\ \ell_{sV} = \ell_{mV} + l_{\sigma s} \\ \ell_{rU} = \ell_{mU} + l_{\sigma r} \\ \ell_{rV} = \ell_{mV} + l_{\sigma r} \end{cases}$$

- Dans le cas linéaire (de non saturation) on a : $\ell_{UV=} = 0$ et $\ell_{mU=} \ell_{mV=} = M$.
- Les inductances cycliques de saturation dans le référentiel (α, β) sont exprimées par : L_{mα} = L_m + I_{mα}/I_{mβ} L_{αβ} = L cos² μ + L_m sin² μ L_{mβ} = L_m + I_{mβ}/I_{mα} L_{αβ} = L sin² μ + L_m cos² μ
 Avec : cos μ = I_{mα}/|I_m| et sin μ = I_{mβ}/|I_m|

Représentation schématique des flux

• A partir des conditions magnétiques linéaire, il en résulte que :

$$L_{\alpha\beta} = 0, \ L_{m\alpha} = \ L_{m\beta} = L_m, \ L_{s\alpha} = L_{s\beta} \ et \ L_{r\alpha} = L_{r\beta}$$

• L'expression du courant de magnétisation est :

$$I_m = \sqrt{(I_{\alpha s} + I_{\alpha r})^2 + (I_{\beta s} + I_{\beta r})^2}$$
(38)

→ 3 → 4 3

Représentation schématique des flux

• A partir des conditions magnétiques linéaire, il en résulte que :

$$L_{\alpha\beta} = 0, \ L_{m\alpha} = \ L_{m\beta} = L_m, \ L_{s\alpha} = L_{s\beta} \ et \ L_{r\alpha} = L_{r\beta}$$

• L'expression du courant de magnétisation est :

$$I_m = \sqrt{(I_{\alpha s} + I_{\alpha r})^2 + (I_{\beta s} + I_{\beta r})^2}$$
(38)

En remplaçant les quantités de flux trouvées dans le système d'équations (26), on obtient (référentiel est lié au stator) :

$$\begin{aligned} & -U_{\alpha s} = R_s \ I_{\alpha s} + l_{\sigma s} \ \frac{dI_{\alpha s}}{dt} + \ell_{m\alpha} \ \frac{dI_{\alpha s}}{dt} + \ell_{m\alpha} \ \frac{dI_{\alpha r}}{dt} + \\ & \ell_{\alpha \beta} \ \frac{dI_{\beta s}}{dt} + \ell_{\alpha \beta} \ \frac{dI_{\beta r}}{dt} \\ & -U_{\beta s} = R_s \ I_{\beta s} \ + l_{\sigma s} \ \frac{dI_{\beta s}}{dt} + \ell_{m\beta} \ \frac{dI_{\beta s}}{dt} + \ell_{m\beta} \ \frac{dI_{\beta r}}{dt} + \\ & +\ell_{\alpha \beta} \ \frac{dI_{\alpha s}}{dt} + \ell_{\alpha \beta} \ \frac{dI_{\alpha r}}{dt} \\ & 0 = R_r \ I_{\alpha r} \ + l_{\sigma r} \ \frac{dI_{\alpha r}}{dt} + \ell_{m\alpha} \ \frac{dI_{\alpha r}}{dt} + \ell_{m\alpha} \ \frac{dI_{\alpha s}}{dt} + \\ & \ell_{\alpha \beta} \ \frac{dI_{\beta s}}{dt} + \ell_{\alpha \beta} \ \frac{dI_{\beta r}}{dt} + \ell_{m\alpha} \ \frac{dI_{\alpha r}}{dt} + \ell_{m\alpha} \ \frac{dI_{\alpha s}}{dt} + \\ & \ell_{\alpha \beta} \ \frac{dI_{\beta s}}{dt} + \ell_{\alpha \beta} \ \frac{dI_{\beta r}}{dt} - \omega_r \left(L_r \ I_{\beta r} + M \ I_{\alpha s}\right) \end{aligned}$$